Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

نویسندگان

  • Maria Theresia Pöschko
  • David Peat
  • John Owers-Bradley
  • Norbert Müller
چکیده

At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin-lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on-resonance experiments with pulsed excitation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically detected magnetic resonance using radio-frequency reflectometry.

The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of a LCR tank circuit. Applied to a silicon field-effect transistor at millikelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of >300 kHz compared to the kilohertz bandwidth of c...

متن کامل

Magnetization noise in magnetoelectronic nanostructures.

By scattering theory we show that spin current noise in normal electric conductors in contact with nanoscale ferromagnets increases the magnetization noise by means of a fluctuating spin-transfer torque. Johnson-Nyquist noise in the spin current is related to the increased Gilbert damping due to spin pumping, in accordance with the fluctuation-dissipation theorem. Spin current shot noise in the...

متن کامل

Efficient determination of diffusion coefficients by monitoring transport during recovery delays in NMRw

Nuclear magnetic resonance spectroscopy (NMR) provides a method of choice to probe transport phenomena on a microscopic scale. In liquid phase, it is possible to explore translational displacements of molecules due to diffusion or flow. Although diffusion can be determined by other methods, pulsed field gradient (PFG) techniques are not invasive and offer a remarkable degree of detail both in v...

متن کامل

Magnetism in SQUIDs at millikelvin temperatures.

We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data are compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we obse...

متن کامل

Field-induced slow relaxation of magnetization in a tetrahedral Co(II) complex with easy plane anisotropy.

The mononuclear Co(II) complex CoBr (dmph = 2,9-dimethyl-1,10-phenanthroline) was obtained and X-ray structurally characterized as a distorted tetrahedron environment that is responsible for the moderately strong positive anisotropy of high spin Co(II). In combination with variable-field magnetic susceptibility data at low temperature, high-field electron paramagnetic resonance (HF-EPR) spectro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016